The Importance of Hygiene and Sanitation in Institutions and Industry: Optimizing Management with Dedicated Software

management sanitek

Introduction

In institutions and industry, hygiene and sanitation are essential elements for ensuring the safety and well-being of employees, clients, and users. This article addresses the importance of proper sanitary maintenance management, with a focus on using dedicated software for developing work routes for janitors and sanitation workers. We will also explore the importance of space analysis, maintenance estimates, execution and planning of work, as well as quality inspections, and we will make a reference to the Sanitek tool (www.sanitek.ca).

Space Analysis: The Key to Good Management and Planning

A thorough analysis of workspaces is crucial for determining hygiene and sanitation needs. This step allows for the identification of risk areas, surfaces to be cleaned, and required maintenance frequencies. Specialized software, such as Sanitek, facilitates this analysis by offering features to map spaces, identify sensitive points, and establish appropriate maintenance protocols.

Maintenance Estimates: A Tool for Optimizing Resources

Maintenance estimates help determine the costs and resources needed to ensure adequate sanitary maintenance. A detailed estimate includes labor, equipment, products, and consumables. Thanks to dedicated software, it is possible to create customized estimates based on the specific needs of each establishment, which optimizes resources and improves efficiency.

Execution and Planning of Work: Optimized Management

Sanitary maintenance management software helps plan and execute hygiene and sanitation work optimally. These tools allow for the creation of work routes for janitors and sanitation workers, taking into account priorities and time constraints. They also offer features to track work progress in real-time, ensure communication between teams, and automate certain tasks, such as ordering products or generating reports.

Quality Inspections: Ensuring Compliance and Excellence

To ensure that hygiene and sanitation standards are met, it is essential to conduct regular quality inspections. Specialized software offers features to plan these inspections, generate detailed reports, and implement corrective actions if necessary. These tools thus facilitate the management of quality standards and compliance with regulations, while ensuring a healthy and safe environment for all occupants.

Sanitek: An Innovative Tool for Hygiene and Sanitation Management

Sanitek is a software specifically designed to facilitate the management of hygiene and sanitation in institutions and industry. It offers a comprehensive solution for space analysis, the development of maintenance estimates, planning and execution of work, as well as conducting quality inspections.

With its intuitive and user-friendly platform, Sanitek allows managers to optimize resource utilization, improve maintenance team efficiency, and ensure compliance with hygiene and sanitation standards. In addition, Sanitek offers features for team communication and information centralization, making it easier to make informed decisions and implement corrective actions.

Conclusion

Hygiene and sanitation are essential elements for the proper functioning of institutions and industry. Implementing effective sanitary maintenance management is therefore crucial to ensure the safety and well-being of all occupants. Dedicated software, such as Sanitek, plays a key role in optimizing this management by offering tailored solutions for each establishment.

By leveraging these tools, maintenance managers can analyze spaces, develop customized maintenance estimates, plan and execute work optimally, and conduct quality inspections to ensure compliance with standards and regulations. Thus, using software like Sanitek improves the efficiency of maintenance teams, optimizes resource utilization, and contributes to a healthy and safe environment for all.

In summary, adopting innovative solutions like Sanitek is a strategic investment for institutions and industry, not only ensuring occupant satisfaction but also meeting legal requirements and strengthening the company’s brand image in terms of hygiene and sanitation.

Life in London in the 19th century

Piccadilly Circus, London, England between 1890 and 1900
Piccadilly Circus, London, England between 1890 and 1900

The last time you brushed your teeth, watered your plants or poured yourself a nice glass of cold tap water, did you stop for a moment to think you had instant access to clean water? safe? To understand how this marvel was created, you have to go back to the beginning of the 19th century in London.

Progress makes perfect even in London

At that time, the streets of London were full of trash and excrement, and the city’s rivers were heavily polluted. All this filth and misery was not just a nuisance to the nostrils of Londoners. It was downright deadly.

Cholera outbreaks in London

The contaminated rivers were particularly dangerous. For example, between 1848 and 1854, several cases of cholera broke out in London, killing thousands. No one knew what caused it.

But there was a sudden medical breakthrough. A medical doctor, Dr. John Snow (no connection to the popular series) was mapping the spread of the disease through the city, he realized that one of the sources of the outbreak was a water utility company that was distributing the water collected downstream of the outlets. He understood that to stop the spread of cholera one had to improve the water supply.

A revolution in water management

Snow’s discovery led to a revolution in sanitation. Soon after, sophisticated clean water systems were introduced, followed by filtration and chlorination. With each of these improvements, water quality and safety have improved.

Extract and free translation: Progress by Johan Norberg

A prevention kit

With virus season now, all the time (!), make sure you have the essentials for your users. Consult our kit at lalema.com specialist for cleaning supplies, sanitary supplies and cleaning products specialist in Montreal, designed to help you! Put it in your basket in 1 click!

How will hygiene and sanitation change in the next 20 years?

hygiene and sanitation

I asked ChatGPT the following question: “How will hygiene and sanitation change in the next 20 years”. Here is its response:

HOW HYGIENE AND SANITATION WILL EVOLVE IN THE NEXT 20 YEARS

It is difficult to accurately predict how hygiene and sanitation will evolve over the next 20 years, but there are some current trends that may continue to develop:

  1. The use of advanced technologies: Technologies such as AI, the Internet of Things (IoT) and sensors can be used more broadly to monitor and improve hygiene and sanitation in living environments.
  2. Improved quality of drinking water: There will likely be increased attention on the quality of drinking water to prevent waterborne diseases. Technologies to purify water, such as filtration and UV disinfection, could be improved and become more widely available.
  3. Food Hygiene: There will likely be an increased focus on food hygiene to prevent foodborne illness. Food quality monitoring and control systems could be improved to ensure food safety.
  4. Sanitation: Efforts to improve sanitation and eliminate waste could be strengthened to prevent water-related diseases. Technologies for treating wastewater and waste could be improved for more sustainable and environmentally friendly management.
  5. Waste management: Effective waste management will become increasingly important in the coming years. With the increasing population, waste generation is expected to increase, and therefore, the development of sustainable waste management systems will become a priority. Technologies such as recycling and composting could be improved and become more widespread.
  6. Public Health: Improved public health will be an important outcome of improved hygiene and sanitation. Hygienic living environments, improved drinking water, and food safety are all critical components of public health. Additionally, better waste management systems can also help reduce health risks from exposure to waste.
  7. Global Cooperation: Global cooperation will be crucial in addressing the challenges of improving hygiene and sanitation, especially in developing countries. International organizations, governments, and non-profits can work together to share knowledge, resources, and best practices for improving hygiene and sanitation.
  8. Environmental Sustainability: Improving hygiene and sanitation will not only benefit public health, but it will also help protect the environment. Efforts to reduce waste and promote sustainable waste management practices will reduce environmental degradation and help protect natural resources.

In general, it can be expected that technological advances will continue to play a key role in improving sanitation in the future. It is also important to continue efforts to raise awareness of the importance of hygiene and sanitation, and the need to take steps to maintain them.

In conclusion, the evolution of hygiene and sanitation over the next 20 years will likely be shaped by a combination of technological advancements, increased awareness, and international cooperation. It is essential that these trends continue to be developed and implemented in a sustainable manner to ensure a healthy and hygienic future for all.

Questions? visit www.lalema.com to have a conversation with real humans by phone or chat.

Note: This post was created with an AI-assisted writing tool and fully reviewed and improved by a human.

The Importance of Respecting the Recommended Dilution Rate for Cleaning Products in Healthcare Facilities

It is important to respect the recommended dilution rate for cleaning products in healthcare facilities for several reasons. First, using cleaning products at the correct dilution helps to ensure that they are effective at removing dirt and germs from surfaces. If the cleaning solution is too dilute, it may not have enough cleaning power to properly disinfect the surface. On the other hand, if the solution is too concentrated, it may be too harsh and potentially damage surfaces or cause irritation to the skin.

Second, using cleaning products at the correct dilution can help to reduce the risk of health hazards. Some cleaning products contain chemicals that can be harmful if ingested or inhaled, or if they come into contact with the skin. Using these products at the recommended dilution helps to minimize the risk of exposure to these chemicals.

Finally, using cleaning products at the correct dilution can help to reduce costs. Using too much of a cleaning product can be wasteful and unnecessarily increase expenses. By using the correct dilution, you can ensure that you are using the optimal amount of product to effectively clean and disinfect surfaces, while also minimizing waste.

In summary, respecting the recommended dilution rate for cleaning products is important in healthcare facilities because it helps to ensure that the products are effective at cleaning and disinfecting surfaces, reduces the risk of health hazards, and can help to reduce costs.

The most comprehension local catalog for your cleaning product with a dilution rate

On the Lalema website, you will find all the cleaning products you need. In addition, you will find practical dilution rate tables.

dilution rate table
Note: This article was created with an AI-assisted writing tool and fully reviewed and improved by a human.

Let’s talk about disinfection (once more)

How to safely perform cleaning and disinfection a surface soiled with bodily fluid and dispose of waste properly?

Here is some of the content from my exclusive training on Infection Prevention and Control in the Presence of Body Fluids. This training (in French with English documentation), presented in the form of short video clips (nearly forty), lasts approximately 2 hours and covers several exclusive and relevant content for hygiene and sanitation workers.

Disinfection

OVERVIEW OF THE CONTENT OF A TRAINING ON DISINFECTION TECHNIQUES

  • The main microbes to which sanitary maintenance workers can be exposed, the associated risks and the means of transmission
  • Basic concepts in sanitary maintenance for cleaning and disinfecting surfaces
  • The different body fluids (body fluids) and the associated risk factors
  • Products and accessories for cleaning and disinfection
  • Personal protective equipment
  • Cleaning and disinfection techniques including hand washing.

THE MAIN MICROBES TO WHICH HEALTH MAINTENANCE WORKERS MAY BE EXPOSED, THE ASSOCIATED RISKS AND THE MEANS OF TRANSMISSION

  • Microbes
  • Viruses or bacteria
  • Reproduction of bacteria
  • Survival of bacteria on surfaces
  • Infectious risk
  • Transmission of infections
  • Virus or bacteria

BASIC CONCEPTS IN SANITARY MAINTENANCE FOR THE CLEANING AND DISINFECTIONS OF SURFACES

  • Basics
  • Sinner’s Circle
  • Wetting power
  • Micelles
  • Foaming power
  • PH scale
  • Eradication of microbes
  • Contact time
  • DIN
  • Types of disinfectants
  • Why dilute a product
  • Always read the manual
  • 7 ways to make maintenance safer

THE DIFFERENT BODY FLUIDS (BIOLOGICAL LIQUIDS) AND THE ASSOCIATED RISK FACTORS

  • Body fluids and associated risks
  • Body fluids (body fluids)
  • Risk factors

PRODUCTS AND ACCESSORIES FOR CLEANING AND DISINFECTION

  1. Produits et accessoires
  2. Trousse de matériel

LES ÉQUIPEMENTS DE PROTECTION INDIVIDUELLE

  • Personal protective equipment (PPE)
  • Hand hygiene
  • Dressing procedure
  • Undressing procedure
  • Practical advice
  • Wearing the mask

CLEANING AND DISINFECTION TECHNIQUES

  • Cleaning and disinfection steps
  • Steps to follow
  • Cleaning and disinfection procedure
  • Waste management
  • What is biomedical waste

FORMATIVE ASSESSMENT

A training cannot be complete without a formal evaluation! This is why we offer each participant a quiz of 10 questions before issuing a superb attestation!

So, are you going to try?

How to properly clean reusable protective equipment

Clean medical inhaler
Photo by Mockup Graphics on Unsplash

When we talk about disinfection, we talk about the prevention and control of infection in the environment. Therefore, equipment used for respiratory therapy is considered semi-critical. The equipment must then be cleaned and disinfected properly between patients. The WHO gives us the proper maintenance of respiratory equipment in procedures to follow. The procedures are checklists in steps of a cycle. Let’s explore all the summarized steps up to the cycle finish. And yes, the cleaning step is before the disinfection step!

Checklists for care, cleaning, disinfection and sterilization of respiratory devices

1. Perform hand hygiene

The title and image say it all

2. Don appropriate personal protective equipment

The personal protective equipment to be worn during the disinfectant preparation includes surgical mask/respirator, googles/face shield, long-sleeved fluid resistant gown/gown plus apron, rubber gloves and boots or closed work shoes.

3. Wash with detergent and rinse with clean water

The external device surfaces must be wiped with a damp cloth or disposable wipe that is soaked in detergent and clean water. Then, remaining detergent residue must be wiped off with a dry lint-free cloth. A mechanical action (scrubbing/brushing) should be used to remove visible dirt deposits and calcifications.

4. Disinfect

4a. Physical disinfection – Heat for heat resistant equipement (steam/hot-water)

A high-level of physical disinfection can be achieved with steam (e.g. autoclaving at lower temperature) or hot-water at least 121°C. This is an inexpensive and effective method for sterilization or high-level disinfection.

4b. Chemical disinfection for plastic plus other parts that can be damaged by heat

b) If the disinfection needs to be with chemicals solutions, it should be performed in a well-ventilated area and away from patients. Use a disposable wipe or a fresh cloth that is soaked in a compatible disinfectant. Hydrogen peroxide 0.5% or ethanol 70-90%. Wipe from top to bottom and avoid contact with electrical connectors.

5. Dry equipment / Rinse equipment

a) Physical equipment often has a drying feature within the machine (e.g. washer, pasteurizer or autoclave). Following pasteurization, the wet equipment is typically dried in a hot-air drying cabinet or air-dried. Make sure to carefully inspect and ensure that no water is left in the equipment.

b) If a chemical solution was used for disinfection, rinse the equipment with sterile or clean water (i.e. water boiled for 5 mins and cooled down). It is preferred to use sterile water for rinsing off residual liquid chemical disinfectant from the respiratory device.

6. Store equipment in closed packages

Last step. Title says it all.

This was a summary of the Care, cleaning and disinfection of respiratory equipment in sterile services department’s article by World Health Organization.

This article is a free translation of WHO’s article.

Source:
World Health Organization
– https://www.who.int/publications/m/item/care-cleaning-and-disinfection-of-respiratory-equipment-in-sterile-services-department
– https://www.who.int/images/default-source/health-topics/coronavirus/care-cleaning-disinfection-of-respiratory-equipment.tmb-479v.png?sfvrsn=14530f0b_1

What’s best? To clean or to disinfect?

When it comes to cleanliness, some people are mixing technical terms leading to ambiguity. It is like mixing chemicals together: That is not a good idea! To keep it simple, we’ll just give a real definition.

Deteriorated surfaces definition

A deteriorated surface shows wear off sign often caused by time or misuse.

Deterioration is one of three elements of impairment of property, the others being functional obsolescence (or obsolescence) and economic obsolescence.

surfaces-vetustes definition

Safe surfaces definition

Safe surface means that it is safe to health. Such surface is healthy or good for health often because of risk management. In the food industry, this is why we often refer to it as food safety.
Safe is also synonymous to hygienic !

corridor-hopital-lalema definition

Disinfected surfaces definition

Disinfection is a voluntary momentary removal operation of certain bacteria (if it comes to “all germs” we refer more to sterilization), so as to stop or prevent infection or the risk of infection or superinfection by pathogenic or undesirable microorganisms or viruses.

For example:

  • To sanitize a surface eliminates 99.9% of microorganisms (This is a 1,000 X reduction)
  • To disinfect a surface removes 99.999% of microorganisms (This is a 100,000 X reduction)
  • To sterilize a surface or instrument removes 99.9999% of microorganisms (This is a 1,000,000 X reduction)

Obviously, “momentarily” is a key fator because the surface will be contaminated again as soon a a contaminant will enter in contact with the it. That’s why some disinfectants have a residual effect that prolongs the action of disinfectant for a certain time.

biofilm-1024x767 definition

To learn more

Visit l’Academy Lalema for a whole lot of online training in sanitation and surface disenfection..

Sources: Larousse, Wikipedia, Linternaute

Cleaning schedule

I develop maintenance program for my clients and the question that comes up most often is:
“How often should I clean this or that?”

clean

How often should I clean this?

Here is a non-exhaustive list of 16 surfaces to clean regularly at home.

Item Frequency Tips
1. Cellular phone

Daily Wipe with a microfiber glass cloth to remove any greasy substances and germs
2. Kitchen Counter

Daily Use a mild all purpose cleaner. When using a disinfectant cleaner, rinse the surface.
3. Dishwasher

Monthly Use specially designed capsules or a little bit of baking soda and vinegar and the trick is done.
4. Refrigerator

Quarterly To avoid the appearance of mold and other undesirable contents, empty and clean the shelves and containers.
5. Kitchen floor

Weekly Use a broom after each meal and a good damp mopping every week.
6. Carpets

Weekly Vacuuming carpets every week will even reduce allergies. Remove the dog and the baby before to do so!
7. Furniture

Monthly Vacuum furniture and fabrics every month and steam clean annually
8. Remote control or joystick

Weekly Remove the batteries, clean the remote control surface by rubbing the buttons and gaps.
9. Ceiling fans

Quarterly With an all purpose cleaner, wipe the blades. Do not forget to turn off the fan!
10. Window blinds

Quarterly Dust and clean batten by batten with soapy water and a soft cloth.
11. Toilet

Daily Brush daily and thoroughly clean once a week.
12. Towels

After some use After the shower or the bath, hang to dry and use a few times (3 or 4 times), then machine wash. Note: If you have teenagers, this thing may not work!
13. Shower curtain

Monthly Spray a bathroom cleaner to remove residual accumulated soaps and limescale.
14. Bed linen

Weekly Wash in warm water to remove bacteria and mites. Avoid eating in your bed!
15. Mattress

Biannual Vacuum the mattress twice a year to remove dead skin cells and mites.
16. Air filter

Monthly Changing air filters every month or as recommended by the manufacturer contributes to a healthy environment.

We have the tools to clean

At Lalema, we serve a large industrial and institutional clientele with an online catalog of more than 18000 products ! Come and have a look!

www.lalema.com

 

Source :

inspired from http://www.webmd.com/a-to-z-guides/ss/slideshow-how-often-clean-this.

Photos are owned by me or from various talended photographs via unsplash.com

GPT3: An AI generated blog post about disinfection

GPT3 AI generated image : “A janitor cart in a hospital patient room”

GPT3 Input

gpt3> write a 250 words article about how hard surface disinfectant will become more essential in the future.

GPT3 Output

As the world becomes more populated and the spread of disease becomes more prevalent, the need for hard surface disinfectants will become more essential. Hard surface disinfectants are a key part of preventing the spread of disease, and as the world becomes more connected, the need for these products will only increase.


There are a number of factors that contribute to the spread of disease, and hard surface disinfectants are an important part of preventing the spread of infection. The main factor that contributes to the spread of disease is contact with contaminated surfaces. Hard surface disinfectants kill the bacteria and viruses that are present on surfaces, preventing the spread of infection.


Another factor that contributes to the spread of disease is the presence of food and water sources that are contaminated with bacteria and viruses. Hard surface disinfectants can also be used to clean these contaminated surfaces, preventing the spread of disease.


In addition to these two factors, there are a number of other factors that contribute to the spread of disease. These include the presence of sick people in close proximity to others, the sharing of contaminated items, and the exposure to contaminated air. Hard surface disinfectants can also be used to clean these contaminated surfaces, preventing the spread of disease.


The need for hard surface disinfectants will only increase as the world becomes more populated and the spread of disease becomes more prevalent. Hard surface disinfectants are a key part of preventing the spread of disease, and as the world becomes more connected, the need for these products will only increase.

Now what?

Visit our disinfectant product category

Clean this or that? How often?

I develop maintenance program for my clients and the question that comes up most often is:
“How often should I clean this or that?”

clean

How often should I clean this?

Here is a non-exhaustive list of 16 surfaces to clean regularly at home.

Item Frequency Tips
1. Cellular phone

Daily Wipe with a microfiber glass cloth to remove any greasy substances and germs
2. Kitchen Counter

Daily Use a mild all purpose cleaner. When using a disinfectant cleaner, rinse the surface.
3. Dishwasher

Monthly Use specially designed capsules or a little bit of baking soda and vinegar and the trick is done.
4. Refrigerator

Quarterly To avoid the appearance of mold and other undesirable contents, empty and clean the shelves and containers.
5. Kitchen floor

Weekly Use a broom after each meal and a good damp mopping every week.
6. Carpets

Weekly Vacuuming carpets every week will even reduce allergies. Remove the dog and the baby before to do so!
7. Furniture

Monthly Vacuum furniture and fabrics every month and steam clean annually
8. Remote control or joystick

Weekly Remove the batteries, clean the remote control surface by rubbing the buttons and gaps.
9. Ceiling fans

Quarterly With an all purpose cleaner, wipe the blades. Do not forget to turn off the fan!
10. Window blinds

Quarterly Dust and clean batten by batten with soapy water and a soft cloth.
11. Toilet

Daily Brush daily and thoroughly clean once a week.
12. Towels

After some use After the shower or the bath, hang to dry and use a few times (3 or 4 times), then machine wash. Note: If you have teenagers, this thing may not work!
13. Shower curtain

Monthly Spray a bathroom cleaner to remove residual accumulated soaps and limescale.
14. Bed linen

Weekly Wash in warm water to remove bacteria and mites. Avoid eating in your bed!
15. Mattress

Biannual Vacuum the mattress twice a year to remove dead skin cells and mites.
16. Air filter

Monthly Changing air filters every month or as recommended by the manufacturer contributes to a healthy environment.

We have the tools to clean

At Lalema, we serve a large industrial and institutional clientele with an online catalog of more than 18000 products ! Come and have a look!

www.lalema.com

Source :

inspired from http://www.webmd.com/a-to-z-guides/ss/slideshow-how-often-clean-this.

Photos are owned by me or from various talended photographs via unsplash.com

To clean or to disinfect? a simple definition.

When it comes to cleanliness, some people are mixing technical terms leading to ambiguity. It is like mixing chemicals together: That is not a good idea! To keep it simple, we’ll just give a real definition.

Deteriorated surfaces definition

A deteriorated surface shows wear off sign often caused by time or misuse.

Deterioration is one of three elements of impairment of property, the others being functional obsolescence (or obsolescence) and economic obsolescence.

surfaces-vetustes definition

Safe surfaces definition

Safe surface means that it is safe to health. Such surface is healthy or good for health often because of risk management. In the food industry, this is why we often refer to it as food safety.
Safe is also synonymous to hygienic !

corridor-hopital-lalema definition

Disinfected surfaces definition

Disinfection is a voluntary momentary removal operation of certain bacteria (if it comes to “all germs” we refer more to sterilization), so as to stop or prevent infection or the risk of infection or superinfection by pathogenic or undesirable microorganisms or viruses.

For example:

  • To sanitize a surface eliminates 99.9% of microorganisms (This is a 1,000 X reduction)
  • To disinfect a surface removes 99.999% of microorganisms (This is a 100,000 X reduction)
  • To sterilize a surface or instrument removes 99.9999% of microorganisms (This is a 1,000,000 X reduction)

Obviously, “momentarily” is a key fator because the surface will be contaminated again as soon a a contaminant will enter in contact with the it. That’s why some disinfectants have a residual effect that prolongs the action of disinfectant for a certain time.

biofilm-1024x767 definition

To learn more

Visit l’Academy Lalema for a whole lot of online training in sanitation and surface disenfection..

Sources: Larousse, Wikipedia, Linternaute

COVID-19 generated hygiene and sanitation costs of $ 12,604.22 per hospitalization in 2020-2021

COVID-19 generated hygiene and sanitation costs of $ 12,604.22 per hospitalization in 2020-2021.

A BIG THANK-YOU

Great good for us, because all this work in hygiene and sanitation, with working conditions not always easy, is an integral part of our health system. It’s a whole.

Thank you for this great job to all the teams who have worked and who are still working hard to keep the spaces clean and well disinfected in our healthcare facilities.

2020-2021 FINANCIAL ANALYSIS

According to public financial data issued by the Ministry of Health and Social Services, between April 1, 2020 and March 31, 2021, assuming a “normal” increase of 6% based on the 3 previous years, the extraordinary costs associated with hygiene and sanitation increased by + 49%. As this unpredictable surplus was not budgeted a priori, it was considered non-recurring and was entered as an “adjustment” in the vast majority of health establishments.

The main if not the only reason for this discrepancy is of course the surpluses required from the hygiene and sanitation teams due to COVID-19, but also the costs generated by the numerous ex situ screening and vaccination clinics.

Budget 2020-2021 - Hygiène et salubrité en pandémie de COVID-19

2020-2021 HOSPITALIZATION ANALYSIS DUE TO COVID-19

According to INSPQ data, between April 1, 2020 and March 31, 2021, there were 20,628 hospital admissions. Of this number 17,262 hospitalizations are said to be outside intensive care and 3,366 hospitalizations are in intensive care.

COSTS GENERATED BY COVID-19 IN HYGIENE AND HEALTH

So in 2020-2021, we can estimate that the budget surpluses are in the order of $ 260 million. A lot of money you will tell me? Yes and no. We are talking about an addition of about 3,000 hygiene and sanitation workers who cover a total area of ​​over 8.3 million square meters! This surplus is distributed as follows:

COST OF HYGIENE AND SANITATION PER HOSPITALIZATION IN THE COVID-19 PANDEMIC

By taking the budget surplus ($ 260M) by hospitalizations (20,628), we arrive at the sum of $ 12,604.22. Of course, this figure includes all direct and indirect expenses related to hygiene and sanitation such as supervision, maintenance of public places, cleaning and disinfection of places associated with prevention such as screening and vaccination sites. .

SOURCES

INSPQ Data on COVID 19

MSSS 2020-2021 Financial Data

Cleaning in Hospitals (part 4)

Work_Organization

How can proper work organization contribute to the cleanliness of a hospital? How to be in the right place with the right equipment? Here are the questions we are going to answer in this post of the Cleaning in Hospitals series.

Evaluation of production needs

First, we need to assess the needs in hygiene and cleanliness. In order to do this, a standard evaluation is preferable but it needs to be adjusted based on the type of place, units, and traffic.

It is during the evaluation of needs that the hygiene and cleanliness estimate (see Cleaning in Hospitals part 2) is going to be determined. All daily, weekly, monthly, and annual tasks have to be considered.

Usually, the results are presented by production yields (square meters/hour) or FTE (Full Time Equivalent).

How to reduce time waste

How to measure productivity in a context where an important aspect of the task is moving? Actually, hygiene and cleanliness departments are almost always in the basement, whereas most of their work happens on the floors!

We increase productivity by reducing traveling.

It is for this reason that the cleaning cart needs to be as complete as possible and the water sources or janitor’s closets well stocked with supplies (i.e.: paper products or waste bags), equipment, and sanitary products.
Moreover, it is important to remember that a good entrance carpet can greatly reduce dirt.

Have a successful day!

Here are a few hints on how to have a successful day:

  • Establish a sequence of actions to perform in a day/week/month
  • Define a sequential order of rooms
  • Integrate linked and periodical tasks (monthly)
  • Make sure to have time gaps to focus on periodical tasks (dusting of high surfaces, polishing, etc.)
  • Minimize traveling
  • Work by space and not by task
  • Distribute tasks equitably
  • One look is worth a thousand words: choose a colorful plan together with some graphics instead of a list of tasks on a word file!

This is all for this series of posts on Cleaning in Hospitals! Don’t forget that we’re always here to help, don’t hesitate to book an appointment by calling 514.645.2753 or subscribe to one of our training seminars. I really hope that you liked this serie of posts!

References:
Hygiène et salubrité en milieux de soins – Démarche pour le développement de stratégies d’entretien des surfaces, MSSS, 2010, 52 pages.

Cleaning in Hospitals (part 3)

cleaning-hospital-staff

The hygiene and cleanliness staff represents a key element in the fight against infections in hospital environments. Often little valued, their role in the global strategy of surface cleaning is extremely important.

The hygiene that comes from the work of the cleaning staff requires a high performance level. In order to reach that, the executing staff and the managers need to master all the different elements representing this profession.

Cleaning products and equipment are undeniably crucial in order to ensure performance during the environment asepsis of any establishment. Therefore, it is important to associate the day-to-day actions of the cleaning staff with a range of products and equipment that favor the quality of their performance.

Since several years, partly due to the devotion and the involvement of many members in the healthcare system, we take into consideration new factors:

  • Provincial training
  • Establishment of an AEP hygiene and cleanliness in healthcare environments of 630 hours now offered by many school boards
  • Provincial day of hygiene and cleanliness
  • Etc.

Having said this, the hygiene and cleanliness staff deserves our deepest gratitude. Thank you so much!

The next post is going to talk more in detail about one aspect of their profession: work organization.

Don’t miss any posts about this series, subscribe to this blog!

References:

Hygiène et salubrité en milieux de soins – Démarche pour le développement de stratégies d’entretien des surfaces, MSSS, 2010, 52 pages.

Cleaning in Hospitals (part 2)

cleaning-hospitals

Cleaning in hospitals allows reducing risks of infection among patients. This is not the only factor, of course: good personal hygiene habits such as washing hands and the use of protective equipment such as overalls, gloves, masks, or protective glasses are also important elements.

For this reason, interventions must be well coordinated in order to have a good surface maintenance plan. The manager of hygiene and cleanliness should therefore take into account:

  • The type of place associated to the level of risk
  • The tasks to perform
  • The required cleaning frequency

If well applied, a detailed estimate allows validating the cleaning performance.

The global approach is going to be determined by type of place:

  • Regular eradication (e.g.: operating rooms)
  • Keeping environmental effects as light as possible (e.g.: low infection risk such as individual office spaces)
  • Balance of microorganisms. This approach is based on the competition between good and bad microbes. The presence of good microbes guarantees less space for bad microbes to grow (e.g.: living environments)
  • Green cleaning. Approach that uses less toxic products
  • Review and improve arrangements and/or surfaces (during conception or renovation)

The next post of this series is going to talk about another key factor: the hygiene and cleanliness staff.

References:

Le nettoyage dans les hôpitaux du 21e siècle by Dr. Stephanie J. Dancer, Medical, Microbiology, Hairmyres Hospital, UK appeared on the magazine Le Nettoyage professionnel, July/August 2012.

Hygiène et salubrité en milieux de soins – Démarche pour le développement de stratégies d’entretien des surfaces, MSSS, 2010, 52 pages.

Cleaning in Hospitals (part 1)

hospital-cleaning

For a long time, cleaning has been all about the look; fresh smell and the absence of stains or dirt were the criteria to determine that a place is clean. Today, these criteria are still generally accepted in environments such as offices and classrooms.

It’s common knowledge, however, that microbes (bacteria or viruses) invisible to the human eye represent a risk for spreading infections. Take the example of the influenza virus: it can survive for up to 48 hours on a hard surface!

Without cleaning and disinfection procedures or a quality check procedure, microbes can survive in hospital environments.

Three key elements have to be considered in order to perform an infective risk analysis:

  • Is the patient carrying a disease agent? Disease agents are classified based on their spreading capacity and their virulence. The choice of a disinfectant will be based on this.
  • Do the functional activities of a sector represent a risk of spreading infections from the environment? E.g.: food service, offices, Intensive Care, etc.
  • The intensity of contact is related to the traffic and the surfaces that are more likely to be touched. E.g.: bathroom fittings.

Have you already performed an infective risk analysis? The next post is going to explain how cleaning allows reducing risks of infection among patients.

Don’t miss any posts about this series, subscribe to this blog! You just need to write your e-mail address, it’s that easy!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References:

Le nettoyage dans les hôpitaux du 21e siècle by Dr. Stephanie J. Dancer, Medical, Microbiology, Hairmyres Hospital, UK appeared on the magazine Le Nettoyage professionnel, July/August 2012.

Hygiène et salubrité en milieux de soins – Démarche pour le développement de stratégies d’entretien des surfaces, MSSS, 2010, 52 pages.

A Brief History of Bleach 2021

Bleach has been studied for the first time by a French chemist named Claude Louis Berthollet in 1775. His factory was based in Paris in the district of… Javel! That is why the French are calling it: Eau de Javel (Javel Water).

Javel Underground, Paris, France

JAVEL Undergroud Station in Paris. Photo courtesy of Google Street View

At first, bleach was used for laundry and as a fade. From 1820, a pharmacist named Antoine Germain Labarraque studied more deeply its disinfecting properties . In the XIX Century, it was commonly used as a disinfectant and water treatment. The NASA used bleach during the Apollo program to disinfect the Apollo XI rocket after its return, in order to avoid contaminating Earth with potential dangerous viruses!

What is Bleach?

Bleach is composed of sodium hypochlorite (NaClO). For chemistry fans, its chemical formula is as follows:

Cl2 + 2 NaOH → NaCl + NaClO + H2O.

For those who don’t like chemistry, well… the formula is the same!

What’s new with Bleach?

Nowadays, bleach is still used as a disinfectant. Stabilized formulas enable to combine the disinfecting ability of chlorine together with the cleaning ability of surfactants.

Other references: http://en.wikipedia.org/wiki/Bleach

We have cleaning solution for you

Visit our web site at www.lalema.com. You will find what you need to distinfect with sodium hypochlorite solution. We are also he owner of Certiklor Technology

How to obtain a more effective disinfection with Certiklör?

What is Certiklör? The name of a new chemical? A new government certification?

None of the above! Simply put, Certiklör technology is the insurance for you, your patients and all Canadians to achieve a better, more efficient and high quality disinfection. Certiklör is a proprietary technology developed by Lalema for you. This technology ensures that you have in the bottle, an effective stabilized hypochlorite, and here to stay!

Let’s talk about surface disinfection

How to safely perform cleaning and disinfection a surface soiled with bodily fluid and dispose of waste properly?

Here is some of the content from my exclusive training on Infection Prevention and Control in the Presence of Body Fluids. This training (in French with English documentation), presented in the form of short video clips (nearly forty), lasts approximately 2 hours and covers several exclusive and relevant content for hygiene and sanitation workers.

Disinfection

OVERVIEW OF THE CONTENT OF A TRAINING ON DISINFECTION TECHNIQUES

  • The main microbes to which sanitary maintenance workers can be exposed, the associated risks and the means of transmission
  • Basic concepts in sanitary maintenance for cleaning and disinfecting surfaces
  • The different body fluids (body fluids) and the associated risk factors
  • Products and accessories for cleaning and disinfection
  • Personal protective equipment
  • Cleaning and disinfection techniques including hand washing.

THE MAIN MICROBES TO WHICH HEALTH MAINTENANCE WORKERS MAY BE EXPOSED, THE ASSOCIATED RISKS AND THE MEANS OF TRANSMISSION

  • Microbes
  • Viruses or bacteria
  • Reproduction of bacteria
  • Survival of bacteria on surfaces
  • Infectious risk
  • Transmission of infections
  • Virus or bacteria

BASIC CONCEPTS IN SANITARY MAINTENANCE FOR THE CLEANING AND DISINFECTIONS OF SURFACES

  • Basics
  • Sinner’s Circle
  • Wetting power
  • Micelles
  • Foaming power
  • PH scale
  • Eradication of microbes
  • Contact time
  • DIN
  • Types of disinfectants
  • Why dilute a product
  • Always read the manual
  • 7 ways to make maintenance safer

THE DIFFERENT BODY FLUIDS (BIOLOGICAL LIQUIDS) AND THE ASSOCIATED RISK FACTORS

  • Body fluids and associated risks
  • Body fluids (body fluids)
  • Risk factors

PRODUCTS AND ACCESSORIES FOR CLEANING AND DISINFECTION

  1. Produits et accessoires
  2. Trousse de matériel

LES ÉQUIPEMENTS DE PROTECTION INDIVIDUELLE

  • Personal protective equipment (PPE)
  • Hand hygiene
  • Dressing procedure
  • Undressing procedure
  • Practical advice
  • Wearing the mask

CLEANING AND DISINFECTION TECHNIQUES

  • Cleaning and disinfection steps
  • Steps to follow
  • Cleaning and disinfection procedure
  • Waste management
  • What is biomedical waste

FORMATIVE ASSESSMENT

A training cannot be complete without a formal evaluation! This is why we offer each participant a quiz of 10 questions before issuing a superb attestation!

So, are you going to try?

Myosan TB, indirect claim against SARS-CoV-2

Myosan TB is a ready-to-use disinfectant cleaner has a broad spectrum virucidal claim. In accordance with Health Canada’s recommendations, we are authorized to make an indirect claim against SARS-CoV-2, the virus responsible for COVID-19 [1] [2] .

Myosan TB

MYOSAN TB

Myosan TB can therefore be used as a disinfectant against SARS-CoV-2, the coronavirus that causes COVID-19, since it is qualified as part of Health Canada’s approach to emerging viral pathogens for hard-to-use surface disinfectants. against SARS-CoV-2.

Coronaviruses are enveloped viruses, which means that they are among the easiest types of virus to kill with an appropriate disinfectant, when used according to the label directions for use.

To obtain Myosan TB, contact us at (514) 645-2753, or infos@lalema.com, or visit www.myosantb.com. Thank you.

SARS-COV-2 (COVID-19)

Coronavirus are enveloped viruses, which means that they are among the easiest types of virus to kill with an appropriate disinfectant, when used according to the label directions.

VIRUCIDAL

Said of a substance capable of destroying a virus.
A virus is an organism made up of at least two things: genetic material (DNA) and proteins. Being dependent on another organism to reproduce, the virus must find a viable host to multiply.

TUBERCULOSIS

A tuberculocidal agent is a real killer of tuberculous bacilli, tuberculosis creating an infection with the mycobacterium Mycobacterium tuberculosis.

BACTERICIDE

Said of a substance having the capacity to kill bacteria.
A bacterium is a single-celled living organism composed of a membrane, genetic material and cellular machinery. It differs from the virus in that it does not need a host to reproduce; the bacteria is an independent organism.

FUNGICIDE

Said of a substance that destroys fungi.
Fungi, commonly called fungi, are sometimes unicellular, sometimes complex multicellular organisms. Composed of a nucleus, a membrane and a cellular machinery, the fungus reproduces itself.

SPREAD THE INFO, NOT THE VIRUS


[1] https://www.canada.ca/fr/sante-canada/services/medicaments-produits-sante/desinfectants/covid-19.html

[2] https://www.canada.ca/fr/sante-canada/services/medicaments-produits-sante/medicaments/demandes-presentations/lignes-directrices/desinfectants/exigences-matiere-innocuite-efficacite-relatives-desinfectants -assimilate-drugs-hard-surfaces.html # b5

Coronavirus: 7 myths

It’s very simple, all the subtitles of this post are false. Fortunately, we are helping you get the facts out about COVID-19 (coronavirus).

coronavirus

CODIV-19 CAN BE TRANSMITTED BY MOSQUITO BITES

FALSE

The new coronavirus is a respiratory virus that spreads mainly through contact with an infected person, through respiratory droplets emitted when a person, for example, coughs or sneezes, or through saliva or secretion droplets nasal passages. To date, there is no information or evidence suggesting that 2019-nCov could be transmitted by mosquitoes. To protect yourself, avoid close contact with someone who has a fever or cough, and practice good hand and respiratory hygiene.

COLD WEATHER AND SNOW CAN KILL NEW CORONAVIRUS

FALSE

The normal temperature of the human body remains around 36.5°C and 37°C, regardless of the outside temperature or weather. Therefore, there is no reason to believe that cold weather can kill the new coronavirus or other pathogens. The most effective way to protect yourself from 2019-nCoV is to wash your hands frequently with an alcohol-based product or with soap and water.

THE NEW CORONAVIRUS (COVID-19) CAN PROJECT UP TO 8 METERS FROM A PERSON WHO IS TUSTING OR SNEAKING

FALSE

Respiratory droplets project up to 1 meter from a person who coughs or sneezes.

When a person infected with COVID-19 coughs or sneezes, the virus is expelled into droplets that can travel a certain distance from that person. Therefore, to protect yourself from any respiratory virus, avoid close contact with someone who has a fever or cough, and wash your hands frequently with hydro alcohol or soap and water.

HAND DRYERS ARE EFFECTIVE IN KILLING COVID-19

FALSE

Hand dryers are not effective in killing COVID-19. To protect yourself from the new coronavirus, you should frequently wash your hands with a water-based product or with soap and water. Once your hands are clean, you should dry them thoroughly with paper towels or a hot air dryer.

CAN EAT GARLIC HELP PREVENT NEW CORONAVIRUS INFECTION?

FALSE

On one positive side, it may drive colleagues away. Garlic is a healthy food that may have certain antimicrobial properties. However, there is no evidence in the current epidemic that consuming garlic protects people from the new coronavirus.

DOMESTIC ANIMALS CAN SPREAD THE NEW CORONAVIRUS

FALSE

There is currently no evidence that pets / pets such as dogs or cats can be infected with the new coronavirus. However, it is always a good idea to wash your hands with soap and water after contact with pets. This protects you from various common bacteria such as E. coli and Salmonella that can pass from pets to humans.

ANTIBIOTICS ARE EFFECTIVE IN PREVENTING AND TREATING NEW CORONAVIRUS INFECTION

FALSE

Antibiotics do not work against viruses, but only against bacteria.

The new coronavirus (COVID-19) is a virus and, therefore, antibiotics should not be used as a means of prevention or treatment.

However, if you are hospitalized for COVID-19 infection, you may be given antibiotics because bacterial co-infection is possible.

This is not a title

Take my COVID-19 online training course now (in french)

Sources:
https://www.who.int/fr/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters

Is Nipah Virus the Next Epidemic Crisis?

Nipah-Virus-Grey-Headed-Flying-Fox-Size

According to the CBC:

A rare virus spread by fruit bats, which can cause flu-like symptoms and brain damage, has killed 10 people in southern India, health officials said on Tuesday, with at least two more cases being monitored.

The virus was first detected in Malaysia in 1998, and India’s eastern state of West Bengal has suffered two outbreaks in the last decade, killing 50 people, the WHO has said.

There has been a another preivous outbreak in Bengladesh in 2004. It would be the third outbreak if confirmed.

Is there any risks in Canada?

The risk to Canadians is considered to be low as there are no species of fruit bats in Canada. However, people working with swine in Southeast Asia should be aware of the risk.

Mode of transmission of Nipah Virus

nipah virus

Public Health Canada states that:

The mechanism for the transmission of the virus from fruit-bats to animals is unknown, but may involve consumption of fruit contaminated with urine or saliva from infected bats. Transmission from animals to humans appears to occur by direct contact with contaminated tissues/body fluids of infected animals, especially pigs. Other infected animals, such as cats and dogs, may also be involved in spreading the virus. Human to human transmission is likely to occur by direct exposure to an infectious inoculum shed in the respiratory secretions of the infected individual, as well as by close physical interaction and frequent contact with the infected individual’s saliva.

Human-to-human transmission has been documented in several of the more recent outbreaks in Bangladesh, before which human-to-human transmission was considered to be a rare event

Sources:

Special Thanks: Remi Charlebois

http://www.cbc.ca/news/health/india-nipah-virus-death-toll-1.4672446

http://www.who.int/csr/disease/nipah/en/

http://www.inspection.gc.ca/animals/terrestrial-animals/diseases/immediately-notifiable/nipah-virus/fact-sheet/eng/1303439340158/1306100144027

https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/nipah-virus.htm

Towards a universal vaccine against flu

Influenza is a stubborn virus. Moreover, every year, the virus is changing and it’s another race against time to produce a new vaccine, often composed of several strains, which will be able to protect the most vulnerable population such as young children, the elderly and sick people.

inlfuenza

AN ENCOURAGING RESEARCH on INFLUENZA

According to the article by Radio-Canada:

At Laval University, Gary Kobinger’s team is testing a new influenza vaccine, which could provide better protection and long-term immunization. The formula incorporates much of the circulating influenza strains over the last 20 years.

A first clinical trial to test the safety of the vaccine ended a few months ago. According to the researchers, it shows that the product does not cause significant side effects.

The effectiveness of vaccines against influenza (the flu) is also limited especially when we guess wrong the strain that will be the most virulent that year!

THE IMPORTANCE OF HAND WASH

We are all at one point exposed to the flu virus. A good way of individual prevention is to put on your hat on and tie your coat. I am joking. On the other hand, regular hand washing before meals, after the toilet and even just when arriving at work or at home is really an effective way against the spread of the virus.

Regular hand soaps like Utopia or antibacterial soap like Utopia AB do the trick.

Did you know that our soaps do not contain any: methyisothiazolinone?

THE IMPORTANCE OF SURFACE DISINFECTION

Cleaning worker also plays a very important role in the winter period when it comes to disinfecting surfaces. Specialty products such as the Ali-Flex line of product offers many benefits:

 

DOWNLOAD MY FREE TRAINING ON INFLUENZA EPIDEMICS

I can give it in person at your workplace. Contact me glanthier@lalema.com

Source: http://ici.radio-canada.ca/nouvelle/1065664/vaccin-universel-grippe-influenza-guerir-personnes-agees-annee-h1n1-une-fois

Would we be ready to face an epidemic of bubonic plague?

Would we be ready to face an epidemic of bubonic plague?

In Madagascar, the government has recently imposed two days ago new emergency measures to stop a plague epidemic. It has been declared 24 dead since 1 month1.

black_death

What is the bubonic plague?

The plague is a bacterium Yersinia pestis, present in rodents as rats are often passed to humans by infected fleas.

According to Health Canada:

The incubation period of the plague varies from one to ten days.

Whatever the form, the illness always starts with flu-like symptoms (fever, chills, muscle aches, weakness and headaches) and can also cause nausea, vomiting, diarrhea and abdominal pain.

If left untreated, the mortality rate can reach 50%.

Bubonic plague smear demonstrating the presence of yersinia pest

SURFACES DISINFECTIONS

According to Health Canada2, in the event of a spill or contaminated surfaces:

Let the aerosols fall; wear protective clothing, carefully cover the spilled material with paper towels and apply 1% sodium hypochlorite from the periphery to the center; allow to act for a sufficient period (30 minutes) before cleaning

Plague is affected by many types of surface disinfectants such as:

MATERIAL SAFETY DATA SHEET: PATHOGENIC AGENTS, AND RISK ASSESSMENT

You are dealing with a bacterium, virus or other pathogen and you want to know more about it. Health Canada has launched an application and a website:

LAST CASE REPORTED IN CANADA

Cases of plague in humans are very rare in Canada; the last case was reported in 1939.

 

References:

1 http://www.lapresse.ca/international/afrique/201709/30/01-5138249-madagascar-durence-measures-to-tenter-delight-pidemic-epidemia.php

2 https://www.canada.ca/en/public_health/services/biosururity-biosurete-laboratory/technical-sheets-health-security-agents-pathogenes-risk-assessment/yers-in-the-health-technical-files -Security-ftss.html

How often should I clean this or that?

I develop maintenance program for my clients and the question that comes up most often is:
“How often should I clean this or that?”

clean

How often should I clean this?

Here is a non-exhaustive list of 16 surfaces to clean regularly at home.

Item Frequency Tips
1. Cellular phone

Daily Wipe with a microfiber glass cloth to remove any greasy substances and germs
2. Kitchen Counter

Daily Use a mild all purpose cleaner. When using a disinfectant cleaner, rinse the surface.
3. Dishwasher

Monthly Use specially designed capsules or a little bit of baking soda and vinegar and the trick is done.
4. Refrigerator

Quarterly To avoid the appearance of mold and other undesirable contents, empty and clean the shelves and containers.
5. Kitchen floor

Weekly Use a broom after each meal and a good damp mopping every week.
6. Carpets

Weekly Vacuuming carpets every week will even reduce allergies. Remove the dog and the baby before to do so!
7. Furniture

Monthly Vacuum furniture and fabrics every month and steam clean annually
8. Remote control or joystick

Weekly Remove the batteries, clean the remote control surface by rubbing the buttons and gaps.
9. Ceiling fans

Quarterly With an all purpose cleaner, wipe the blades. Do not forget to turn off the fan!
10. Window blinds

Quarterly Dust and clean batten by batten with soapy water and a soft cloth.
11. Toilet

Daily Brush daily and thoroughly clean once a week.
12. Towels

After some use After the shower or the bath, hang to dry and use a few times (3 or 4 times), then machine wash. Note: If you have teenagers, this thing may not work!
13. Shower curtain

Monthly Spray a bathroom cleaner to remove residual accumulated soaps and limescale.
14. Bed linen

Weekly Wash in warm water to remove bacteria and mites. Avoid eating in your bed!
15. Mattress

Biannual Vacuum the mattress twice a year to remove dead skin cells and mites.
16. Air filter

Monthly Changing air filters every month or as recommended by the manufacturer contributes to a healthy environment.

We have the tools to clean

At Lalema, we serve a large industrial and institutional clientele with an online catalog of more than 18000 products ! Come and have a look!

www.lalema.com

 

Source :

inspired from http://www.webmd.com/a-to-z-guides/ss/slideshow-how-often-clean-this.

Photos are owned by me or from various talended photographs via unsplash.com

The complete guide to hospital cleaning

hospital-cleaning

For a long time, cleaning has been all about the look; fresh smell and the absence of stains or dirt were the criteria to determine that a place is clean. Today, these criteria are still generally accepted in environments such as offices and classrooms.

It’s common knowledge, however, that microbes (bacteria or viruses) invisible to the human eye represent a risk for spreading infections. Take the example of the influenza virus: it can survive for up to 48 hours on a hard surface!

Without cleaning and disinfection procedures or a quality check procedure, microbes can survive in hospital environments.

Three key elements have to be considered in order to perform an infective risk analysis:

  • Is the patient carrying a disease agent? Disease agents are classified based on their spreading capacity and their virulence. The choice of a disinfectant will be based on this.
  • Do the functional activities of a sector represent a risk of spreading infections from the environment? E.g.: food service, offices, Intensive Care, etc.
  • The intensity of contact is related to the traffic and the surfaces that are more likely to be touched. E.g.: bathroom fittings.

Infective Risk Analysis

Cleaning in hospitals allows reducing risks of infection among patients. This is not the only factor, of course: good personal hygiene habits such as washing hands and the use of protective equipment such as overalls, gloves, masks, or protective glasses are also important elements.

For this reason, interventions must be well coordinated in order to have a good surface maintenance plan. The manager of hygiene and cleanliness should therefore take into account:

  • The type of place associated to the level of risk
  • The tasks to perform
  • The required cleaning frequency

If well applied, a detailed estimate allows validating the cleaning performance.

The global approach is going to be determined by type of place:

  • Regular eradication (e.g.: operating rooms)
  • Keeping environmental effects as light as possible (e.g.: low infection risk such as individual office spaces)
  • Balance of microorganisms. This approach is based on the competition between good and bad microbes. The presence of good microbes guarantees less space for bad microbes to grow (e.g.: living environments)
  • Green cleaning. Approach that uses less toxic products
  • Review and improve arrangements and/or surfaces (during conception or renovation)

The Cleaning Staff: key to success

The hygiene and cleanliness staff represents a key element in the fight against infections in hospital environments. Often little valued, their role in the global strategy of surface cleaning is extremely important.

The hygiene that comes from the work of the cleaning staff requires a high performance level. In order to reach that, the executing staff and the managers need to master all the different elements representing this profession.

Cleaning products and equipment are undeniably crucial in order to ensure performance during the environment asepsis of any establishment. Therefore, it is important to associate the day-to-day actions of the cleaning staff with a range of products and equipment that favor the quality of their performance.

Since several years, partly due to the devotion and the involvement of many members in the healthcare system, we take into consideration new factors:

  • Provincial training
  • Establishment of an AEP hygiene and cleanliness in healthcare environments of 630 hours now offered by many school boards
  • Provincial day of hygiene and cleanliness
  • Etc.

Having said this, the hygiene and cleanliness staff deserves our deepest gratitude. Thank you so much!

Work Organization

How can proper work organization contribute to the cleanliness of a hospital? How to be in the right place with the right equipment? Here are the questions we are going to answer in this post of the Cleaning in Hospitals series.

Evaluation of production needs

First, we need to assess the needs in hygiene and cleanliness. In order to do this, a standard evaluation is preferable but it needs to be adjusted based on the type of place, units, and traffic.

It is during the evaluation of needs that the hygiene and cleanliness estimate (see Cleaning in Hospitals part 2) is going to be determined. All daily, weekly, monthly, and annual tasks have to be considered.

Usually, the results are presented by production yields (square meters/hour) or FTE (Full Time Equivalent).

How to reduce time waste

How to measure productivity in a context where an important aspect of the task is moving? Actually, hygiene and cleanliness departments are almost always in the basement, whereas most of their work happens on the floors!

We increase productivity by reducing traveling.

It is for this reason that the cleaning cart needs to be as complete as possible and the water sources or janitor’s closets well stocked with supplies (i.e.: paper products or waste bags), equipment, and sanitary products.

Moreover, it is important to remember that a good entrance carpet can greatly reduce dirt.

Have a successful day!

Here are a few hints on how to have a successful day:

  • Establish a sequence of actions to perform in a day/week/month
  • Define a sequential order of rooms
  • Integrate linked and periodical tasks (monthly)
  • Make sure to have time gaps to focus on periodical tasks (dusting of high surfaces, polishing, etc.)
  • Minimize traveling
  • Work by space and not by task
  • Distribute tasks equitably
  • One look is worth a thousand words: choose a colorful plan together with some graphics instead of a list of tasks on a word file!

Want to know more?

Look this free webinar from my collegue Remi:

Need help?

Don’t hesitate to call 514.645.2753 or subscribe to one of our training seminars. I really hope that you liked this post!

An enzyme to destroy biofilms

One can not stop the progress. The discovery of an enzyme capable of preventing the production of a biofilm, this polymeric protective layer produced by bacteria that prevents antibiotics and surface disinfectants from functioning well, could ultimately revolutionize the fight against nosocomial infections.

perturbation-biofilm

The team at the McGill University Health Center, which includes Dr. Donald C. Sheppard, has published a study in the journal Proceedings of the National Academy of Sciences (PNAS). Their hope is that this technology will be the subject of human clinical trials in Canada within 5 years and be used in hospitals within 10 years.

From the abstract:

We demonstrate that glycoside hydrolases derived from the opportunistic fungus Aspergillus fumigatus and Gram-negative bacterium Pseudomonas aeruginosa can be exploited to disrupt preformed fungal biofilms and reduce virulence.

What is a biofilm?

My colleague Rémi Charlebois described biofilms as follows:

Biofilms found on surfaces are often derived from a complex colony of microorganisms producing polymers that allow them to adhere better to the surface and facilitate colony life. In short, a biofilm is like a city for microbes. Man has learned to tame these biofilms and can use them to treat wastewater or produce certain molecules such as natural plastics. However, the presence of unwanted biofilms could be harmful and can lead to infections.

Biofilms are also found on the skin and medical devices. Thus, according to the article of Le Devoir:

Biofilms, a highly sticky matrix of proteins and sugar polymers made by bacteria to protect themselves, are attached to the skin, mucous membranes or the surface of biomedical materials, including catheters, tubing, heart valves and other prostheses Which become preferred entry points for infection.

In the same article, Dr. Sheppard quotes:

Biofilms are produced by molecules that defend against our immune system or against antibiotics with this shell that is 1000 times more resistant than the organisms that produce and proliferate in these biofilms.

An enzyme that acts as a “destructive machine” for biofilms

In short, the enzyme discovered was modified to destroy the biofilms instead of forming them. This is a new strategy that can reduce nosocomial infections in healthcare centers.

Watch this video about biofilms (25 minutes, french)

Sources:

http://www.ledevoir.com/societe/sante/501939/des-chercheurs-percent-le-secret-de-la-resistance-de-certaines-bacteries

http://www.lapresse.ca/sciences/medecine/201706/27/01-5111114-avancee-majeure-contre-les-infections-dans-les-hopitaux.php

What about Surface Disinfection against Poliovirus

Recently, my friend Rémi wrote on Twitter: “Why is it so long to get rid of Polio in the world? “, Did you know that there are barely 30 cases per year in the world! Only 3 countries in the world still have Polio cases. One of these 3 countries, Nigeria is on track to succeed with no cases reported since 1 year.

Credit CNN

Should we worry about the anti-vaccine movement?

In the report on CNN twitted by Rémi, the specialist mentions that the number of children not vaccinated in the United States is growing continuously. Will we have to wait for another epidemic?

Surface disinfection against poliovirus type 1

According to Health Canada, in its guideline – Safety and Efficacy Requirements for Disinfectants Assimilated to Hard Surface Drugs, a broad spectrum virus is defined as:

Broad-Spectrum Virucide: A disinfectant that is shown to be effective against a representative, envelope-free and hard-to-kill virus, which is also intended to inactivate other enveloped and envelope-free viruses (ie a product of which A “broad spectrum virucide” efficacy has been demonstrated).

Also according to Health Canada:

The incidence of poliomyelitis in Canada declined following the creation of vaccination programs in the 1950s. The last indigenous case of wild poliovirus infection in Canada dates back to 1977. In 1994, the World Health Organization Officially declared Canada free from wild poliovirus. The cases of paralytic poliomyelitis that have occurred in Canada since then have been associated with imported cases of wild poliovirus infection and the use of OPV.

According to the MSSS, in its guide “Disinfectants and disinfection in hygiene and sanitation: fundamental principles”

Among the viruses are those that are enveloped by a lipid layer and those that are not. These are called naked viruses. Paradoxically, this lipid-rich envelope is easily altered by chemicals, making wrapped viruses vulnerable. In contrast, naked viruses are “accustomed” to coping with outdoor conditions and are more resistant to disinfectants. Generally, if a disinfectant is active against naked viruses, such as polio, it is likely to be active against enveloped viruses, such as AIDS (HIV).

Quaternary or sodium hypochlorite disinfectants

Quaternary or sodium hypochlorite disinfectants with the “broad-spectrum virucidal” claim are effective against naked viruses such as polio.

Good Practices in Waste Management

Waste management can be a real headache especially if you work in a hospital or university! In Quebec, the legal and regulatory framework has evolved for more than 50 years and in 2017, several municipal, provincial and federal laws and regulations are in force. Let’s see how we can classify and demystify the different types of waste.

Waste Management

Credit photo Joseph Barrientos via unsplash

Good practices in waste management

To properly manage waste, it is imperative on one hand to be well aware of the characterization of your waste and on the other hand to know the regulations that apply to your situation.

Safe Handling

The safe handling of waste, whether at the time of its production, handling, storage or disposal, must be accomplished with appropriate protective measures for your own safety, safety of of others and protection of the environment.

Communication

Each department must also be informed of the way in which they dispose of the waste they produce in a safely manner. That’s why a good communication plan is also important!

Reduction at source

Take action by initiating gradual changes in how you manage your residual materials on the basis of the 3RV-E principle that promotes source reduction, reuse, recycling and valorise until residual materials must be eliminated.

  • Reducing at source is the fundamental principle of management to decrease the quantity of goods consumed, which necessarily decreases the amount of natural resources consumed.
  • Reuse is to give a second life to objects and use what others do not need anymore.
  • Recycling is the process of converting a residual material into a raw material for the manufacture of a new product
  • Valorisation is to give a second life to the products but in different ways, usually this is done by the biological way for example compost or energy like biofuels
  • Elimination when all efforts have been made in the 3RV and waste is finally disposed of.

Classification of waste by category

In industrial and institutional environments, waste is generally grouped into 7 categories:

  • General Waste
    • Non-recyclable waste with no reuse or recovery potential
  • Biomedical waste
    • Human anatomical waste
    • Animal anatomical wastes
    • Non-anatomical waste
      • Piercing, sharp or breakable objects that have been in contact with blood
      • A liquid or a biological tissue
      • Biological tissues, cell cultures, cultures of micro-organisms;
      • Live strain vaccines;
      • Containers of blood and blood-soaked equipment, etc.
  • Pharmaceutical waste
    • Hazardous pharmaceutical waste
      • Drug residues
      • Toxic expired drugs
      • Cytotoxic drugs
    • Non-hazardous pharmaceutical waste
      • Other drug residues
      • Non-hazardous expired drugs
  • Chemical waste
    • Chemicals from laboratories
      • Laboratory reagents
      • Laboratory solvents
    • Pressurized containers
  • Radioactive waste
    • Residues containing radioactive isotopes above standard
    • Syringes, reactors, lead cylinders (nuclear medicine)
  • Electronic waste (or with heavy metals)
    • Hardware
      • Computers
      • Screens
    • Cell phones
    • Battery
    • Articles containing mercury
      • Thermometers
      • Fluorescent or compact fluorescent bulbs
  • Recyclable waste
    • Paper
    • Cardboard
    • Plastic
    • Glass
    • Metal
    • Food and compostable residues
    • Organic waste
    • Construction debris
      • Brick
      • Concrete
      • Unpainted gypsum board
      • Metal
      • Wood

Legislative and regulatory framework for waste management in Quebec

  • Loi sur la qualité de l’environnement (chapitre Q-2)
  • Règlement sur l’enfouissement et l’incinération des matières résiduelles (c. Q-2, r. 19)
  • Règlement sur la santé et la sécurité du travail (chapitre S-2.1,r. 13)
  • Code de sécurité pour les travaux de construction (chapitre S-2.1,r. 4)
  • Règlement sur les déchets biomédicaux (c. Q-2, r. 12)
  • Code de la sécurité routière (chapitre C-24.2)
  • Règlement sur le transport des matières dangereuses (c. C-24.2, r. 43)
  • Règlement sur les matières dangereuses (c. Q-2, r. 32)
  • Règlement sur la récupération et la valorisation de produits par les entreprises (c. Q-2, r. 40.1)
  • Code de sécurité pour les travaux de construction – amiante (chapitre S-2.1, r. 4)
  • Loi sur la sûreté et la réglementation nucléaires (L.C. 1997, ch. 9)
  • Règlement général sur la sûreté et la réglementation nucléaires (DORS/2000-202)
  • Règlement sur la radioprotection (DORS/2000-203)
  • Règlement sur l’emballage et le transport des substances nucléaires (DORS/2000-208)
  • Règlement sur les substances nucléaires et les appareils à rayonnement (DORS/2000-207)

Learning, Understanding, Implementing, Enhancing

Have you enjoyed this post and would like to learn about this topic or about hygiene and sanitation in general? Great! Why not check out our training and consulting catalog now?

Source: Guide de gestion des déchets du réseau de la santé et des services sociaux

Inside an anthill near you

Several tasks accomplished by ants are similar to those of human professions such as farmer or breeder. Swiss researchers recently added a surprising task to this list: chemist!

david-higgins-10165-fourmi-1024x683

Credit David Higgins, Unsplash

Community life

We all know that anthills are full of ants. A population of a colony can easily reach several millions. Although they may be insects, food supply, waste management and infection control are, believe it or not, a major concern for the queen of an anthill.

The chemist ant

By mixing coniferous resin with formic acid (a venom secreted by ants to combat their enemies), the mixture doubles the antifungal efficacy of the resin alone. These ants are capable of improving the resistance of the colony to pathogens. This is the first time that we have observed, apart from humans, a species mixing different compounds in order to improve their effects.

Hard surface Disinfection in the human world

At Lalema, conifer resin and formic acid are not used to make our disinfectants. On the other hand, our formulas are developed and validated by real chemists in addition to being registered with the appropriate governmental bodies.

Our exclusive Certiklör technology allows our sodium hypochlorite products such as Ali-Flex RTU to have the following advantages over the competitor’s products :

  • Hypochlorite stabilized in solution (vs. Bleach)
  • Low odor (vs. Bleach at the same concentration)
  • Low corrosive potential (vs. Bleach at the same concentration)

Discover our Certiklör product line now or call our customer service at 514.645.2753 for more information.

Source: http://ici.radio-canada.ca/news/1024037/fourmis-chimie-infection-bacterie-antibiotique-etude

Thanks to my cousin Thierry L-D for finding the article about the ants!

How to make cleaning safer in 7 steps

According to ASSTSAS, falls and slips account for 18% of workers’ compensation costs in the province of Quebec. This is the third leading cause of workplace accidents in the health and social services sector and it includes all types of jobs.

Causes of workplace accidents

There are many other causes of workplace related accidents :

  • Fall and slide accidents
  • Muscle problems related to lift and flexion
  • Eye and skin lesions, often related to the handling of chemicals
  • Respiratory problems, often the result of working with chemicals and equipment
  • Accidental exposure to electrical hazards or biological hazards

Seven ways to make cleaning work safer

  1. Ensure periodic review of working methods and procedures
  2. Identify and evaluate “at risk” situations including load lifting, repetitive movements, exposure to chemicals, air quality, work organization
  3. Determine tasks requiring personal protective equipment such as gloves, goggles, masks, protective sleeves, etc.
  4. Wear non-slip shoes when stripping or laying floor finish
  5. Install “wet floor” safety panels when washing floors. Remove the panels when the floors are dry.
  6. Inspect the electrical wiring of your equipment regularly. Never pull the wire to disconnect a device.
  7. Consider the presence of any body fluid or blood as a real biological hazard and clean up only if you have received the proper training.

Sources:

Click to access FT13_chutes_WEB.pdf

http://www.cleanlink.com/news/article/Seven-Ways-To-Make-Cleaning-Work-Safer–20393 (via Kim B., thanks!)

Biofilms: What you should know.

Biofilms are everywhere

Well hidden or sometimes visible, always disgusting, biofilms, as so well described by my colleague Rémi Charlebois, are defined as follows:

Biofilm is an aggregation of microbial cells, surrounded by a protective layer of extracellular polymeric matrix, which attaches itself to any surface found in the hospital environment and becomes a source of contamination. Formation of complex, multicellular communities by microorganisms is a natural phenomenon which helps bacteria or fungi to survive environmental stress such as cleaning and disinfection.

Warning: Graphic Content Ahead

A Biofilm looks like this:

Kitchen Drain

biofilms-drain-cuisine

Source: http://www.biofilm.montana.edu/content/household-biofilms

Sink strainer

biofilm-bouchon-evier

Source: http://www.biofilm.montana.edu/content/household-biofilms

Showerhead

biofilm-pommeau-douche

Source: http://www.biofilm.montana.edu/content/household-biofilms

Toilet Bowl

biofilm-cuve-toilette

Source: http://www.biofilm.montana.edu/content/household-biofilms

How to remove biofilms

Here are 3 methods to eliminate biofilm:

Replace equipment

This mehode is somewhat drastic, probably very expensive certainly mostly impractical. Some industries still proceed that way in 2016. I must say that in some cases it may be the only and best solution. For example pipe sections, filters, etc.

Strong acids and bases

Hydrochloric or Peracetic acids or strong bases such as caustic are sometimes used alternatively. However, corrosivity and danger of these chemicals can damage surfaces, individual protection equipment, storage and handling can also be a challenge . Furthermore, there is always the workplace hazards.

6 reasons why staff should be more involved

staff

When selecting or standardizing cleaning products, the involvement and participation of your staff  is essential. It is important to set up a participatory structure (mandatory user committee) for the acquisition of products and equipment. This would not only lead to a greater accountability from the users, but it will also bring a higher degree of satisfaction.

This structure would allow managers :

  1. To listen to users and to promote their full autonomy;
  2. To establish internal standards for any product. Such standards should truly reflect the needs of users;
  3. To review product stock to ensure they remain relevant;
  4. To specify, with users, technical specifications of products for purchasing according to the standards of the institution;
  5. To educate stakeholders on the content of standards and their use;
  6. To enhance internal resources in terms of products and equipment.

Participatory approach for the staff with the managers

Managers and users must be trained to properly select products and their many uses to avoid handling errors, improper dilution and to grab the security concepts associated. This is an essential prerequisite which is part of a participatory process that will generate a consensus from the janitors about the choice of cleaning products and initiate actions and training of new practices.

3 useful definitions in cleaning and disinfection

When it comes to cleanliness, some people are mixing technical terms leading to ambiguity. It is like mixing chemicals together: That is not a good idea! To keep it simple, we’ll just give three useful definitions.

Deteriorated surfaces

A deteriorated surface shows wear off sign often caused by time or misuse.

Deterioration is one of three elements of impairment of property, the others being functional obsolescence (or obsolescence) and economic obsolescence.

surfaces-vetustes

Safe surfaces

Safe surface means that it is safe to health. Such surface is healthy or good for health often because of risk management. In the food industry, this is why we often refer to it as food safety.
Safe is also synonymous to hygienic !

corridor-hopital-lalema

Disinfected surfaces

Disinfection is a voluntary momentary removal operation of certain bacteria (if it comes to “all germs” we refer more to sterilization), so as to stop or prevent infection or the risk of infection or superinfection by pathogenic or undesirable microorganisms or viruses.

For example:

  • To sanitize a surface eliminates 99.9% of microorganisms (This is a 1,000 X reduction)
  • To disinfect a surface removes 99.999% of microorganisms (This is a 100,000 X reduction)
  • To sterilize a surface or instrument removes 99.9999% of microorganisms (This is a 1,000,000 X reduction)

Obviously, “momentarily” is a key fator because the surface will be contaminated again as soon a a contaminant will enter in contact with the it. That’s why some disinfectants have a residual effect that prolongs the action of disinfectant for a certain time.

biofilm-1024x767

Sources: Larousse, Wikipedia, Linternaute

Welcome to RamblingsAboutDisinfection.com

ramble

It’s been a year and a half since we started www.ali-flex.com. From the beginning, the blog purpose was mainly to ramble about disinfection. Hence, the name of this new web site!

We know from many comments that you liked our old posts, so we brought them to this new website.

Before I forget,  www.ali-flex.com is more alive than ever, but will from now on be dedicated to the Ali-Flex, Chlorinated Disinfectant Cleaner. One of the main advantages of Ali-Flex RTU is to be a disinfectant as well as a cleaning product. Ali-Flex RTU is ready to use and does not require any dilution, which allows avoiding wrong manipulations or dilution while saving time. Ali-Flex uses exclusive Certiklör Technology.

The difference with our Certiklör stabilized hypochlorite?

The name says it all: stabilized hypochlorite!

Our multidisciplinary team of skilled scientists took 2 years to stabilize the hypochlorite solution. What is the secret? I’m afraid that’s like a little like the Caramilk’s secret! All I can say is that the ingredients that uses this technology have been carefully selected and expertly designed to give hypochlorite increased stability.
And who says stabilized hypochlorite, says better disinfection, less smell and increased cleaning!

If you wish to ramble about it, do not hesitate to share this website with your collegues.

How to reduce fatigue and nosocomial infection at the same time

anti-fatigue mat

Working long hours in an upright position rings a bell to you? Back pain, stress and fatigue are your daily meals? There may be a solution for you.

First: Reduce fatigue with an anti-fatigue mat

One of the features found in this type of carpet is the presence of an absorbent foam. Has it been developed by NASA? In fact, we only need to know if it works. If fatigue is reduced and comfort is improved, then risk of injury and error is reduced.

Second: a unique environment

Anti-fatigue mats are found in dry, wet or oily environement. It is however possible to have a dry environment where there is a risk of contamination.

Most ergonomic mats designed for a dry environment have no backing as shown by the following picture:

without backing
When the mat is placed in an environment where there is a risk of contamination, for example in a intensive care unit, a nurse workstation or an examination room, this can be a real problem. Indeed, how can one ensure the disinfection of such a foam pad, an absorbent material, is located under the carpet ?

A suitable carpet to reduce fatigue for the Healthcare Environment

The solution? Get a sealed carpet. This is exactly what was done with the Pure-Clean anti-fatigue mat.

with backing

Pure Clean carpets (also known previously under the name Pure Ergo-by Lalema) is an ergonomic mat designed specifically for critical areas in terms of infection control.

  • Non-porous carpet completely sealed sides
  • Resistant surface cuts and punctures
  • Very easy to clean and disinfect
  • Excellent anti-fatigue properties